МЕТЧИКИ ДЛЯ КОНИЧЕСКОЙ РЕЗЬБЫ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ М о с к в а

УДК 621.993.1:006.354

межгосударственный стандарт

МЕТЧИКИ ДЛЯ КОНИЧЕСКОЙ РЕЗЬБЫ

Технические условия

ΓΟCT 6227-80

Taps for taper thread. Specifications

МКС 25.100.50 ОКП 39 1335

Дата введения 01.07.81

Настоящий стандарт распространяется на метчики, предназначенные для нарезания конической дюймовой резьбы с углом профиля 60° по ГОСТ 6111 и трубной конической резьбы по ГОСТ 6211 на сверлильных станках, автоматах и агрегатных станках с применением специальных патронов для нарезания конической резьбы в резьбовых соединениях трубопроводов машин и станков, изготовляемые для нужд экономики страны и экспорта.

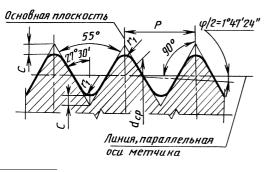
Стандарт полностью соответствует СТ СЭВ 424.

Требования стандарта в части разд. 1, 2, 4, 5 и пп. 3.1.1 и 3.1.2 являются обязательными. (Измененная редакция, Изм. № 1, 2).

1. ОСНОВНЫЕ РАЗМЕРЫ И ПРОФИЛЬ РЕЗЬБЫ

1.1. Основные размеры и профиль резьбы метчиков должны соответствовать указанным на черт. 1 и в табл. 1 и 2.

Профиль резьбы метчиков для конической дюймовой резьбы с углом профиля 60°по ГОСТ 6111



Основная плоскость Р ф/2=1°47'24"

30°

Линия, параллельная
оси метчика

Профиль резьбы метчиков для трубной конической резьбы с углом профиля 55° по ГОСТ 6211

* Размер для справки.

Примечания:

- 1. Биссектриса угла профиля перпендикулярна к оси метчика.
 - 2. Шаг резьбы измеряется параллельно оси метчика.
- 3. Предельные отклонения размеров профиля резьбы должны отсчитываться от линий теоретического профиля в направлении, перпендикулярном к оси метчика.

Черт. 1

Издание официальное

 \star

© Издательство стандартов, 1980 © ИПК Издательство стандартов, 2003

Метчики для конической дюймовой резьбы по ГОСТ 6111

MM
В
PI
þ
O
\mathbf{z}
\mathfrak{C}
а

_		1 .													
Таблица	Предельные отклонения углов	угла накло- на <u>ф</u>		— <i>6</i> ′ +3′	-				ì	+3,					
Та6	Пред откло ул	яглу ынивогоп пофофпя		± 30′				±25′				±20′			
=					4,5							9			
		Пред. откл. для <i>ћ</i> г		-0,045				-0,065				-0,085			
	$h_1 = h_2$	Пред. откл. для И		-0,035				-0,040				-0,050			
		нимоН.		0,377				0,565		922 0	3,7 = 3		0,884		
Ē		d_3	5.7	,	8 0	0,0	10.3	2632	13,8	17,0	22,3	28,0	36,7	42,8	54,8
-		d_2	5,5	7	,	10	2	12	-	16	20	25	29	33	42
		d_1	6,3	8,0	8,0	11,2	11,2	14.0	,	18,0	22,4	28,0	31,5	35,5	45,0
B MM	$d_{ m cp}$			7.	9 519	7,517	12,443	,	15,926	19,772	25,117	31,461	40,218	46,287	58,325
газмеры в мм		D	× ×	,	10.7	10,7	14		17,7	21,8	27,3	34,1	42,9	49,0	61,2
Fa3		12	15	16	61	19	;	22	1	26	32	36	40	45	52
=		71		2,8			•	4,5		2.5	2,5		9,9	'	
-		<i>I</i> ₀	10	2	11	11	5		16	21	21	26	77	i	28
		1	16	21	18	10	24		26	30	32	40	42	į	45
		T	50	2	55		65)	75	85	95	110	120	140) •
	ня Плинс	P (пред. откл. \pm 0,013 до 25 мм)		0,941				1,411		1 814	1,011		2,209		
=	мм 1 ,22 а	исло шагов на длине		27				18		4			111/2		
	ьсзрерг	Обозначение размера	K 1/.	91 / 🕶	K 1/2	8 / 4	K 1/,	4	$K^{3/8}$	$K^{1}/_{2}$	$K^{3}/_{4}$	K 1	$K 1^{1}/_{4}$	$K 1^1/2$	K 2
-		чтэомэгнэмиф∏													
		Обозначение метчика	2680-0001	2680-0002	2680-0003	2680-0004	2680-0005	2680-0006	2680-0007	2680-0008	2680-0009	2680-0010	2680-0011	2680-0012	2680-0013

Пример условного обозначения метчика для нарезания конической дюймовой резьбы К $^{1/4}$ " с диаметром хвостовика $d_1=14$ мм:

Метчик 2680-0006 ГОСТ 6227

Метчики для конической трубной резьбы по ГОСТ 6211

Размеры в мм

Таблица 2

1	Предельные отклонения углов	угла наклона <u>ф</u>		ý	+3,					_5' +3'		
:	пробрания вклу аниаокоп откло		+ 25′	± 25′ ±20′					±15′			
				4,5				9				
		ζ.	0.125		0,184		0,317					
	o	с (пред. откл.: вершины +0,015 —0,025; впадины +0,050)			0.214		0.290			0,369		
		d_3	5,7	7,7	10,3	13,6	17,0	22,4	28,3	36,8	42,6	54,3
		d_2	5	7	6	11	14	18	22	29	33	37
		d_1	5,6	8,0	10,0	12,5	16,0	20,0	25,0	31,5	35,5	40,0
	d_{cp}		7,142	9,147	12,301	15,806	19,793	25,279	31,770	40,431	46,324	58,135
		О	6,7	10,0	13,4	17,0	21,3	26,8	33,7	42,4	48,3	60,1
		12	13	16	18	20	24	28	34	40	45	48
		1,	2,7		<u>,</u>	7,0						
		10	10,1	10,1	15,0	15,4	20,5	21,8	26,0	28,3	28,3	32,7
		1	14	15	19	21	26	28	33	36	37	41
		T	52	59	<i>L</i> 9	52	87	96	601	119	125	140
	P (пред. откл. \pm 0,013 на длине до 25 мм)		1,337			2,309						
	мм 4,62 €	Нисло шагов на длине	28		19	ì	4			11		
	ьсзрерг	вдэмевд эмнэчвнео	$Rc^{1}/_{16}$	$Rc^{1}/_{8}$	Rc ¹ / ₄	Rc ³ / ₈	$Rc^{1}/_{2}$	$Rc^{3}/_{4}$	Rc 1	Rc 1 ¹ / ₄	Rc $1^{1}/_{2}$	Rc 2
		чтэомэкнэмиф∏										
		Обозначение метчика	2680-0051	2680-0014	2680-0016	2680-0018	2680-0019	2680-0020	2680-0021	2680-0022	2680-0023	2680-0024

Пример условного обозначения метчика для нарезания конической трубной резьбы Rc 1/4: Метчик 2680-0016 ГОСТ 6227

(Измененная редакция, Изм. № 1, 2).

С. 4 ГОСТ 6227—80

- 1.2. Размеры квадратов по ГОСТ 9523.
- 1.3. У метчиков для резьб К 1/16", Rc 1/16; K 1/8", Rc 1/8; K 1/4", Rc 1/4 допускается выполнять проточку для выхода круга при шлифовании резьбы.

(Измененная редакция, Изм. № 1).

1.4. Центровые отверстия — формы A по ГОСТ 14034. Метчики для резьбы К 1/16", Rc 1/16 допускается изготавливать с наружными центрами.

(Измененная редакция, Изм. № 1, 2).

- 1.5. Допускается скругление по вершине и впадине профиля конической дюймовой резьбы в пределах поля допуска на величину h_1 .
 - 1.6. Элементы конструкции и геометрические параметры метчиков указаны в приложении 1.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Метчики должны изготавливаться в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке.
 - 2.2. Метчики должны быть изготовлены из быстрорежущей стали по ГОСТ 19265.
- 2.3. Метчики для резьбы К $^3/_8$ " и Rc $^3/_8$ и более должны изготавливаться сварными. Метчики для резьбы Rc $^1/_8$ и Rc $^1/_4$ допускается изготавливать сварными. В зоне сварки раковины, непровар, поджог металла, кольцевые трещины и свищи не допускаются.
- 2.4. Хвостовики сварных метчиков должны изготавливаться из стали марки 45 по ГОСТ 1050 или из стали марки 40X по ГОСТ 4543.
 - 2.5. Твердость метчиков должна быть:

рабочей части — 63 . . . 66 HRC_э;

у метчиков из быстрорежущей стали с содержанием ванадия 3 % и более и кобальта 5 % и более $-64\ldots68$ HRC $_3$;

хвостовика на длине, включающей квадрат и кольцевую канавку:

у сварных метчиков — 37 . . . 52 HRC₃;

у цельных метчиков — 37 . . . 57 HRC_э.

(Измененная редакция, Изм. № 1).

- 2.6. Метчики допускается изготавливать цианированными.
- 2.7. Параметры шероховатости поверхностей метчиков по ГОСТ 2789 не должны быть более, мкм:

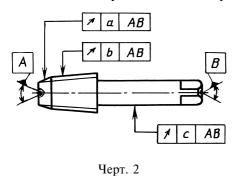
профиля резьбы, передней и задней поверхности	<i>Rz</i> 3,2
хвостовика (в посадочной части)	Ra0,8
канавки	<i>Rz</i> 10
остальных поверхностей	<i>Rz</i> 25

 Π р и м е ч а н и е. Параметр шероховатости передней поверхности должен выдерживаться на высоте не менее $1^1/_2$ высоты профиля резьбы. Допускается перелом передней поверхности в сторону поднутрения.

(Измененная редакция, Изм. № 1).

2.8. После термической обработки центровые отверстия и наружные центры должны быть механически обработаны.

(Измененная редакция, Изм. № 2).


- 2.9. Метчики должны быть затылованы по профилю на всей длине рабочей части и по наружной поверхности заборного конуса.
- 2.10. По согласованию с потребителем допускается изготовление метчиков без кольцевых канавок.
 - 2.11. Предельные отклонения размеров метчиков не должны быть более:

общей длины L	h16
длины рабочей части l	2j _s 16
длины заборной части l_1	
длины до основной плоскости l_0	\pm $^{1}/_{2}$ шага резьбы
длины b_2	j _s 15
диаметра хвостовика d_1	h9
диаметра кольцевых канавок d_2	h14
радиуса кольцевых канавок r	H16
переднего угла	±2°

заднего угла по режущей (заборной) части для резьб:

2.12. (Исключен, Изм. № 1).

2.13. Допуски радиального биения режущей части, калибрующей части и хвостовика должны соответствовать указанным на черт. 2 и в табл. 3.

Размеры в мм Обозначение размера bcрезьбы K 1/16'' - K 1/2''0,02 Rc 1/16 - Rc 1/20,03 0,02 K 3/4", Rc 3/4 K 1" — K 2", Rc 1 — Rc 2 0,03 0,04 0,03

(Измененная редакция, Изм. № 1).

2.14. Средняя наработка до отказа и 95 %-ная наработка метчиков из стали марки Р6М5 должны быть не менее значений, указанных в табл. За.

Таблица За

Таблица 3

Обозначение размера резьбы	Средняя наработка до отказа, шт. (количество нарезанных отверстий)	95%-ная наработка, шт. (количество нарезанных отверстий)
K 1/16', K 1/8"; Rc 1/16, Rc 1/8	185	75
K 1/4", K 3/8"; Kc 1/4, Rc 3/8	225	90
K 1/2", K 3/4"; Rc 1/2, Rc 3/4	275	110
K 1", K 1 1/4"; Rc 1, Rc 1 1/4	175	70
K 1 1/2", K 2"; Rc 1 1/2, Rc 2	125	50

(Измененная редакция, Изм. № 1, 2).

2.15. Критерием затупления метчиков является несоответствие нарезаемой резьбы требуемой точности.

(Введен дополнительно, Изм. № 1).

2.16. На хвостовике метчика должны быть четко нанесены:

товарный знак предприятия-изготовителя;

обозначение метчика (последние четыре цифры);

обозначение резьбы;

марка стали рабочей части.

Примечания:

- 1. Допускается марку стали Р6М5 не маркировать.
- 2. Допускается маркировать вместо марки стали буквы:

HSS — для стали с содержанием вольфрама 6 % и более;

- HSSCo для стали с содержанием кобальта, с указанием марки стали на этикетке. 3. На метчиках для резьбы К $^1/_{16}$ " К $^1/_4$ ", Rc $^1/_{16}$ Rc $^1/_4$ знаки маркировки допускается наносить на
- 4. На метчиках для резьбы К $^{1}/_{16}$ " К $^{1}/_{4}$ ", Rc $^{1}/_{16}$ Rc $^{11}/_{4}$ обозначение метчиков допускается не
- 2.17. Транспортная маркировка, маркировка потребительской тары и упаковка по ΓΟCT 18088.
 - 2.16, 2.17. (Введены дополнительно, Изм. № 2).

3. ПРИЕМКА

Правила приемки — по ГОСТ 23726.

(Измененная редакция, Изм. № 1).

- 3.1.1. Периодические испытания на среднюю наработку до отказа проводятся один раз в три года, на 95 %-ную наработку — один раз в год не менее чем на пяти метчиках.
- 3.1.2. Испытания метчиков должны проводиться на одном типоразмере для каждого диапазона резьб, указанных в табл. 4.

Таблица 4

Обозначение размера резьбы	Скорость резания, м/мин
$K^{1}/_{16}" - K^{3}/_{4}"$; Rc $^{1}/_{16} - Rc^{3}/_{4}$	2,7—3,6
K 1" — K 2"; Rc 1—Rc 2	3,6—5,5

3.1.1, 3.1.2. (Измененная редакция, Изм. № 1, 2).

4. МЕТОДЫ КОНТРОЛЯ

- 4.1. Испытания метчиков должны проводиться на сверлильных или резьбонарезных станках, соответствующих установленным для них нормам точности и жесткости.
- 4.2. Крепление метчиков должно осуществляться при помощи патронов, обеспечивающих самоустановление метчиков или изделия в радиальном направлении, компенсирующих отклонение от отверстия и метчика.
- 4.3. Метчики должны испытываться на образцах из стали марки 45 по ГОСТ 1050, твердостью 197 . . . 207 HB.
- 4.4. У изделий, предназначенных для нарезания резьбы, должны быть предварительно обработаны отверстия коническими развертками конусообразностью 1 : 16. Диаметр обработанного отверстия должен соответствовать внутреннему диаметру резьбы по ГОСТ 6111 или диаметру отверстий под нарезание трубной конической резьбы по ГОСТ 21350.
 - 4.1—4.4. (Измененная редакция, Изм. № 1).
 - 4.5. Испытания метчиков на работоспособность, среднюю наработку до отказа и 95 %-ную

Таблица 5

Обозначение размера резьбы	Количество нарезанных отверстий
От К 1/16" до К 1/4"; от Rc 1/16 до Rc 1/4	35
K 3/8" и K 1/2"; Rc 3/8 и Rc 1/2	25
К 3/4" и К 1"; Rc 3/4 и Rc1	12
От К1 1/4" до К 2"; от Rc1 1/4 до Rc2	10

наработку должны проводиться на режимах, указанных в табл. 4.

(Измененная редакция, Изм. № 1, 2).

4.6. Каждым испытуемым на работоспособность метчиков должно быть нарезано количество отверстий, указанное в табл. 5.

После испытаний на работоспособность на режущих кромках не должно быть выкрашиваний. Метчики после испытаний должны быть пригодны к дальнейшей работе.

- 4.7. В качестве смазочно-охлаждающей жидкости при машинном нарезании резьбы применяется 5 %-ный (по массе) раствор эмульсола в воде с расходом не менее 5 л/мин.
 - 4.6, 4.7. (Измененная редакция, Изм. № 1).
- 4.8. Приемочные значения средней наработки до отказа и 95 %-ной наработки не должны быть менее указанных в табл. 6.

Таблица 6

Обозначение размера резьбы	Приемочные значения наработки, шт. (количество нарезанных отверстий)					
	средней	95 %-ной				
K 1/16", K 1/8"; Rc 1/16, Rc 1/8	210	85				
K 1/4", K 3/8"; Rc 1/4, Rc 3/8	255	100				

Продолжение табл. 6

Обозначение размеры резьбы	Приемочные значения наработки, шт. (количество нарезанных отверстий)						
Ооозначение размеры резвов	средней	95 %-ной					
K 1/2", K 3/4"; Rc 1/2, Rc 3/4	310	125					
K 1", K 1 1/4"; Rc 1, Rc 1 1/4	198	80					
K 1 1/2" K 2" · Rc 1 1/2 Rc 2	140	55					

(Измененная редакция, Изм. № 1, 2).

- 4.9. Твердость метчиков измеряют по ГОСТ 9013.
- 4.10. Внешний вид контролируют осмотром.
- 4.11. Параметры шероховатости поверхностей метчиков проверяют сравнением с образцами шероховатости по ГОСТ 9378 или с образцовыми инструментами, имеющими значения параметров шероховатости поверхностей, указанные в п. 2.7 с применением лупы ЛП-1— 4^{\times} по ГОСТ 25706.
- 4.12. При контроле параметров метчиков должны применяться методы и средства измерения, погрешность которых не превышает:

при измерении линейных размеров — значений, указанных в ГОСТ 8.051;

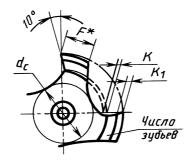
при измерении углов — 35 % значения допуска на проверяемый угол;

при контроле формы и расположения поверхностей — 25~% значения допуска на проверяемый параметр.

- 4.13. Соответствие параметров нарезанной резьбы требованиям п. 2.15 контролируют при помощи конических резьбовых калибров (пробок) по ГОСТ 6485.
 - 4.9—4.13. (Измененная редакция, Изм. № 1).

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Транспортирование и хранение — по ГОСТ 18088.


Разд. 5. (Измененная редакция, Изм. № 2).

Разд. 6. (Исключен, Изм. № 1).

ПРИЛОЖЕНИЕ 1 Рекомендуемое

ЭЛЕМЕНТЫ КОНСТРУКЦИИ И ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ МЕТЧИКОВ

Элементы конструкции и геометрические параметры метчиков указаны на чертеже и в таблице.

^{*} Размер для справок.

Размеры в мм

	-					
Вид резьбы	Обозначение размера резьбы	d _c (пред. откл. h14)	z	F	K	<i>K</i> ₁
Коническая дюймовая резьба по ГОСТ	K ¹ / ₁₆	3,6		3,2	0,5	0,10
6111—52	K ¹ / ₈	4,6	3	3,8	0,75	0,15
	$K^{-1}/_{4}$	6,1		5,3	1,0	0,20
	$K^{3}/_{8}$	9,6		4,3	1,5	0,20
	$K^{1}/_{2}$	11,8		5,8	1,3	0,25
	$K^{3}/_{4}$	13,3	4	7,0	1,75	0,30
	K 1	16,6		8,8	2,0	0,40
	$K 1^{1}/_{4}$	21,0		11,7	2,5	0,50
	$K 1^{1}/_{2}$	30,0	6	8,7	2,0	0,40
	K 2	37,5		10,1	2,5	0,50
Коническая трубная резьба по	Rc ¹ / ₁₆	3,6		3,2	0,5	0,10
ГОСТ 6211	Rc ¹ / ₈	4,6	3	3,8	0,75	0,15
	Rc ¹ / ₄	6,1		5,3	1,0	0,20
	$Rc^{3}/_{8}$	9,6		4,3	1,5	0,20
	$Rc^{-1}/2$	11,8		5,8	1,5	0,25
	$Rc^{3}/_{4}$	13,3	4	7,0	1,75	0,30
	Rc 1	16,6		8,8	2,0	0,40
	Rc 1 ¹ / ₄	21,0		11,7	2,5	0,50
	Rc 1 ¹ / ₂	30,0	- 6	8,7	2,0	0,40
	Rc 2	37,5		10,1	2,5	0,50

Примечания:

- 1. Дно стружечных канавок выполнять: у метчиков для резьб К 1/16'' К 1/2'', Rc 1/16 —Rc 1/2 параллельно образующей конуса; у метчиков для резьб К 3/4'' К 2'', Rc 3/4 Rc 2 параллельно оси метчика.
- 2. К величина затылования измеряется по наружному диаметру на режущей части (на первом витке, прилегающем к калибрующей части).
 - K_1 величина затылования по всему профилю, измеряется в основной плоскости.
 - 3. Диаметр сердцевины $d_{\rm c}$, ширина зуба F и передний угол заданы в основной плоскости.

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 2. (Исключено, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 09.06.80 № 2655
- 3. Стандарт полностью соответствует СТ СЭВ 424-77
- 4. Стандарт соответствует международному стандарту ИСО 2284—87
- 5. B3AMEH ΓΟCT 6227-71, ΓΟCT 5.2317-77
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 8.051—81	4.12	ГОСТ 9013—59	4.9
ΓΟCT 1050—88	2,4; 4.3	ГОСТ 9378—93	4.11
ΓΟCT 2789—73	2.7	ГОСТ 9523—84	1.2
ΓΟCT 4543—71	2.4	ΓΟCT 14034—74	1.4
ΓΟCT 6111—52	Вводная часть, 1.1; 4.4;	ΓΟCT 18088—83	2.17; 5
	приложение 1	ΓΟCT 19265—73	2.2
ΓΟCT 6211—81	Вводная часть, 1.1;	ΓOCT 21350—75	4.4
	приложение 1	ΓΟCT 23726—79	3.1
ГОСТ 6485—69	4.13	ГОСТ 25706—83	4.11

- 7. Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 8. ИЗДАНИЕ (сентябрь 2003 г.) с Изменениями № 1, 2, утвержденными в декабре 1986 г., октябре 1990 г. (ИУС 4—87, 1—91)

Редактор *Р.С. Федорова* Технический редактор *Н.С. Гришанова* Корректор *М.В. Бучная* Компьютерная верстка *Л.А. Круговой*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 24.09.2003. Подписано в печать 30.10.2003. Уч.-изд. л. 1,00. Тираж 86 экз. С 12607. Зак. 330.